Nadezhdachizhikova7968
?>

Дано ab=7 см, ac=6 см, bc=6 см, найти sina

Геометрия

Ответы

Urmanov19903131
Дано:ABCD - ромб.AB = 5 см.BD = 6 см.OK ⊥ ABCD.Найти KA, KB, KC, KD.
Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см.
Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.
Veril8626
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: \sqrt{ k^{2}- k^{2}* sin^{2}a } = \sqrt{ k^{2}(1- sin^{2}a) } = k^{2} * cos^{2}a ... теперь находим АД, используя подобие треугольников....\frac{ k^{2}* cos^{2} }{k}= \frac{AD}{k^{2}* cos^{2} } .... значит, АД=\frac{ k^{2}* cos^{2}a*k^{2}* cos^{2}a }{k}= k^{3} * cos^{4}a

4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2

 1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga

2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...cos^{2}a=1- sin^{2}a
cosa= \sqrt{ \frac{144}{169} } = \frac{12}{13}
tga= \frac{sin}{cos}
tg=5/13 * 13/12=5/12
dima0218687
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: \sqrt{ k^{2}- k^{2}* sin^{2}a } = \sqrt{ k^{2}(1- sin^{2}a) } = k^{2} * cos^{2}a ... теперь находим АД, используя подобие треугольников....\frac{ k^{2}* cos^{2} }{k}= \frac{AD}{k^{2}* cos^{2} } .... значит, АД=\frac{ k^{2}* cos^{2}a*k^{2}* cos^{2}a }{k}= k^{3} * cos^{4}a

4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2

 1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga

2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...cos^{2}a=1- sin^{2}a
cosa= \sqrt{ \frac{144}{169} } = \frac{12}{13}
tga= \frac{sin}{cos}
tg=5/13 * 13/12=5/12

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано ab=7 см, ac=6 см, bc=6 см, найти sina
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

perova-s200
Guskov
Korneeva1856
Merkuloff78
bagramyansvetlana
Виктория1690
Lopatkin_Shchepak174
cvetyzelen283
dmtr77
volk88882
seymurxalafov05
club-pushkin
bk4552018345
vova00831
denisovatat7