Viktorovich395
?>

Диагонали трапеции abcd ( ab||cd) пересекаются в точке m. площадь треугольника adm равна 12, dm=2bm. найти площадь трапеции.

Геометрия

Ответы

sakalrip
Площадь треугольника АВД равна сумме площадей треугольников АМД и АВМ и равна 6+3=9.Высота треугольника АВД равна высоте трапеции АВСД.Введём обозначения: h - высота треугольника АМД, H - высота треугольника АВД,  a - нижнее основание трапеции, в - верхнее основание.Отношение высот определим из их площадей:(1/2)a*h = 6,(1/2)a*H = 9.Отсюда h/Н = 6/9 = 2/3.Теперь рассмотрим треугольник ВМС. Он подобен треугольнику АМД. Высота его равна Н - h, а площадь пропорциональна квадрату сходственных сторон.Произведение a*h = 6*2 = 12,                       a*H = 9*2 = 18.Если принять целочисленные значения этих величин, то такое соотношение возможно при значениях а = 3, h = 4, Н = 6.Тогда Н - h = 6 - 4 = 2.Площадь треугольника ВМС равна:
(1/2)в*(Н - h) = (1/2)в*2 = в.Отношение площадей треугольников ВМС и АМД равно 
(Н – h)²/h² = 2²/ 4² = 4/16 = 1/4.То есть S(ВМC) = (1/4)*S(АМД),
 (1/2)в*(Н - h) = (1/4)*6.
(1/2)в*2 = 6/4,
в = 6/4 = 3/2.
Перенесём сторону ВС к нижнему основанию в точку Д.
Получим треугольник АВД₁, равновеликий по площади трапеции АВСД.
S(АВСД) = S(АВД₁) = (1/2)*H*(a+в) = (1/2)*6*(3+(3/2)) = 27/2 = 13,5 кв.ед.
Iiexota280274

1. 65°, 65°, 50°.

2. 57,5°; 57,5°; 65°.

Объяснение:

Нам дан один из внешних углов равнобедренного треугольника. У равнобедренного треугольника углы при основании равны.

Значит возможны два варианта решения:

1. Если дан внешний угол при основании, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).

Тогда угол при вершине треугольника равен 180° - 2·65° = 50° (по сумме внутренних углов треугольника, равной 180°).

ответ: 65°, 65°, 50°.

2. Если дан внешний угол при вершине, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).

Внешний угол треугольника равен сумме двух внутренних (в нашем случае равных), не смежных с ним углов. Следовательно, углы при основании такого треугольника равны 115°:2 = 57,5°.

ответ: 57,5°; 57,5°; 65°.


Один из внешних углов равнобедренного треугольника равен 115 градусов . найдите углы треугольника
Yevgenevna
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали трапеции abcd ( ab||cd) пересекаются в точке m. площадь треугольника adm равна 12, dm=2bm. найти площадь трапеции.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

orion-inginiring7807
Катерина Телюкин925
polina0075880
dmitrovlug8248
fominovaVladislav1346
nikiforovako76
akarabut343
Наталья_Владимир708
veniaminsem
dyatchina63
НосовЖелиховская
sales5947
zubritskiy550
sov0606332
Мария-Кострыгина175