bolosolo77
?>

Угол при вершине равнобедренного треугольника равен 56 градусам найдите углы приосновании этого треугольника

Геометрия

Ответы

Kamil
Углы при основании равнобедренного треугольника равны, а сумма углов любого треугольника равна 180°
1)180°-56°=124° - приходится на два равных угла
2)124°:2=62°
ответ: оба угла при основании равны 62°
Irina Svetlana
Дано:
ΔАВС-равнобедренный
∠В=56°
∠А=∠С (т.к. АВС - равн)
Найти:
∠А-?; ∠С-?
Решение:
∠А=∠С=(180°- 56°):2= 62°(по теореме о сумме углов Δ)
ответ: ∠А=∠С=62°
Klicheva_Ermachenkova1536
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав
Лихачев Полина1978
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Угол при вершине равнобедренного треугольника равен 56 градусам найдите углы приосновании этого треугольника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Maksimova1320
oslopovavera
Avetisyan575
vedaikin
mileva84
Александровна-Павловна
firsova5911
dmitzu8594
Хасанбиевич Колесников716
Demina-Khokhlov584
zodgener
Pavel_Olegovna1601
bg1967bg
aivia29
rada8080