Назовем трапецию АВСД, где ВС и АД - основания. Из т.С опустим перпендикуляр СЕ к стороне АД. АВСЕ - прямоугольник по построению, значит АЕ=ВС=3. ЕД=АД-АЕ=5-3=2.
Из треугольника СДЕ: угол ДСЕ=180-СЕД-СДЕ=180-90-45=45. Значит треугольник СДЕ равнобедренный, значит СЕ=ЕД=2
СД^2=CE^2+EД^2=2^2+2^2=8, СД=2*корень из 2
Тело вращения представляет собой объединение цилиндра с осью АЕ и конуса с осью ДЕ.
S(боковая конуса) = пи*R*L=пи*СЕ*СД=3,14*2*2*корень из 2=12,56*корень из 2
S(боковая цилиндра) = 2*пи*R*ВС=2*пи*СЕ*ВС=2*3,14*2*3=37,68
S(основания)=пи*R^2=пи*СЕ^2=3,14*2^2=12,56
Все складываем и получаем
S=50,24+12,56*(корень из 2)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите углы параллелограмма abcd, если: a) ∠a = 84°; б) ∠a - ∠b = 55°; в) ∠a+ ∠c = 142°; г) ∠а = 2∠в; д) ∠cad = 16, ∠acd = 37°
б) ∠A-∠B=55*. Обозначим угол В через х. Тогда угол А равен х+55.
Сумма углов в четырехугольнике равна 360*. Составим уравнение:
(х+х+55)*2=360*;
4х=360-110;
4х=250;
x=62,5* - угол В;
62,5+55=117,5* - угол А.
В параллелограмме противоположные стороны и углы равны
в) ∠А+∠С=142*; ∠А=∠С = 142:2=71*;
∠В=∠D=180*-71*=109*;
г) ∠А = 2∠В; ∠В обозначим через х, то ∠А=2х;
В сумме все углы дают 360*. Составим уравнение:
(х+2х)*2=360;
6х=360;
х=60* - угол В.
60*2=120* - угол А.
д) ∠CAD = 16, ∠ACD = 37°;
∠B=∠D=180*-(16+37)=127*;
∠A=∠C=(360*-127*2)/2=53*.
Как-то так... :))) Удачи! Надеюсь разберетесь...