задача решается дополнительным построением, которое полезно запомнить.
пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.
Через точку C проводим прямую II BD до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.
Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть это - одна прямая, соединяющая середины оснований. Треугольник АСЕ тоже подобен АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна (там получился параллелограмм, образованный медианой СМ треугольника ACE, отрезком, соединяющим середины оснований и отрезками оснований) :).
Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2. Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP (потому что диагонали делятся пополам в точке пересечения). Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.
СРЕ - треугольник с заданными сторонами СЕ = BD = 5, PЕ = AC = 3, СР = 2*CM = 4.
Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.
Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)
задача решается очень элегантным дополнительным построение
пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.
Через точку D проводим прямую II АС до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.
Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть это - одна прямая, соединяющая середины оснований. Треугольник АСЕ Тоже подобен АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна :).
Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2. Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP. Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.
СРЕ - треугольник с заданными сторонами РЕ = 5, СЕ = 3, СР = 2*2 = 4.
Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.
Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авс ∠в = 60 градусов, ∠с=30 градусов, вс = 2. найдите площадь.
АВ = 0.5 * ВС = 0.5 * 2 = 1 (как катет, лежащий против угла в 30°)
АС^2 = ВС^2 - АВ^2 = 4 - 1 = 3
АС = корень из 3
Площадь прямоугольного треугольника равна половине произведения катетов.
S = (корень из 3 * 1) / 2 = (корень из 3) / 2
ответ: S = (корень из 3) / 2