Дан ромб, сторона которого равна 17 см, а разность диагоналей - 14 см. Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника. По заданию d1 - d2 = 14. Разделим на 2 обе части. (d1/2) - (d2/2) = 7. Обозначим (d1/2) за х - это катет треугольника. Второй катет равен х - 7. По Пифагору a² = (d1/2)²+ (d2/2)². 289 = x² + (x - 7)². 289 = x² + x² - 14x + 49. 2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение. х² - 7х - 120 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-7)^2-4*1*(-120)=49-4*(-120)=49-(-4*120)=49-(-480)=49+480=529; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√529-(-7))/(2*1)=(23-(-7))/2=(23+7)/2=30/2=15; x_2=(-√529-(-7))/(2*1)=(-23-(-7))/2=(-23+7)/2=-16/2=-8. Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см. Площадь ромба равна: S = 4*(1/2)*15*8 = 15*16 = 240 см².
elizabetmaslova3
30.09.2020
плиткой 5×5 покрыть можно,т.к получается целое число
8•10=80 плиток потребуется
плиткой 7×8 покрыть нельзя,т.к ни одной стороной не подходит
Guskov
30.09.2020
Дано: в конус вписан шар; h = OC = 8 мм; AC = 10 мм Найти: r - ?; длину линии касания
Для решения нужно провести сечение конуса по диаметру основания, в сечении будет равнобедренный ΔBCA
ΔAOC - прямоугольный. По теореме Пифагора OA² = AC² - h² = 100 - 64 = 36 = 6² OA = 6 мм
ΔBCA равнобедренный ⇒ BA = 2·OA= 2·6 = 12 мм Площадь треугольника Площадь треугольника через радиус вписанной окружности 16r = 48 ⇒ r = 3 мм
Длина касания - это длина окружности с центром в точке P и радиусом KP ΔDKC - прямоугольный, т.к. DK - радиус в точку касания K
ΔBOC подобен ΔCKD по двум углам, прямому и общему ∠KCD
ΔBOC подобен ΔKPC по двум углам, прямому и общему ∠KCD
Длина окружности с центром в точке Р L = 2π·KP = 2·π·2,4 = 4,8π
ответ: радиус вписанного шара 3 мм; длина линии касания 4,8π мм
Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a² = (d1/2)²+ (d2/2)².
289 = x² + (x - 7)².
289 = x² + x² - 14x + 49.
2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение.
х² - 7х - 120 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)^2-4*1*(-120)=49-4*(-120)=49-(-4*120)=49-(-480)=49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√529-(-7))/(2*1)=(23-(-7))/2=(23+7)/2=30/2=15;
x_2=(-√529-(-7))/(2*1)=(-23-(-7))/2=(-23+7)/2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4*(1/2)*15*8 = 15*16 = 240 см².