Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника. ОВ = 8/√3 см. По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра. Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию. ЕЕ площадь: S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2 Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
Tamara
26.02.2021
Возможны варианты... 1) можно попытаться построить прямоугольный треугольник по линиям сетки, визуально (по клеточкам) посчитать длину катетов, или (если по клеточкам посчитать не представляется возможным) вычислить длину сторон треугольника как длину ДИАГОНАЛИ прямоугольника... Вершины (точки) обычно заданы в узлах сетки, длину сторон прямоугольника по сетке определить всегда можно, диагональ вычислить по т.Пифагора))) а дальше записать какую-нибудь тригонометрическую функцию угла (как отношение сторон прямоугольного треугольника))) 2) бывает, что построенный треугольник НЕ прямоугольный... тогда нужно применить теорему косинусов))) например, ОВ -- диагональ прямоугольника со сторонами 2 и 10 ОВ = √104 = 2√26 ОА = ОВ АВ = √(64+64) = 8√2 и вот в этом примере высоту построить по линиям сетки не представляется возможным, поэтому по т.косинусов можно записать: AB² = AO² + OB² - 2*AO*OB*cos(AOB) cos(AOB) = (2*104 - 128) / (2*104) = 80/208 = 10/26 = 5/13 зная косинус, можно найти синус... sin(AOB) = √(1 - 5²/13²) = √(144/13²) = 12/13 tg(AOB) = (12/13) / (5/13) = (12/13) * (13/5) = 12/5 = 24/10 = 2.4 как-то так...