Вариант 1). Рассмотрим рисунок 1, данный в приложении. Пусть АВСD - данный квадрат, М - точка касания квадрата и сферы, О - центр сферы. По условию ОА=ОВ=ОС=ОD=8 см. По т. Пифагора R=ОМ=√(ОА²-МА²) Диагональ АС квадрата – гипотенуза двух равных прямоугольных равнобедренных треугольника с катетами 8 см и острыми углами 45°. и равна 8:sin45•=8√2. ⇒ AM=AC:2=4√2 ⇒ Искомый радиус OM=√(64-32)=4√2 см.
* * *
Вариант 2). Возможно, квадрат касается сферы сторонами. Тогда решение будет другим. (см. рис.2)
Квадрат, длина стороны которого равна 8 см, касается сферы (сторонами). Вычислите длину радиуса сферы, если известно, что её центр удалён от вершин квадрата на расстояние, равное 8 см.
Квадрат касается сферы в 4 точках, а плоскость квадрата отсекает от сферы круг, радиус которого равен радиусу окружности, вписанной в квадрат. Длина радиуса вписанной в квадрат окружности равна половине его стороны.
r=8:2=4 см
Пусть центр этой окружности (точка пересечения диагоналей квадрата) будет Н.
Расстояние от центра О сферы до вершины С квадрата равно гипотенузе прямоугольного треугольника ОНС, в котором НС - половина диагонали квадрата, ОН - расстояние от центра сферы до плоскости квадрата. (см. рисунок)
Диагональ квадрата равна его стороне, умноженной на √2, т.е. 8√2. НС =(8√2):2=4√2
По т.Пифагора
ОH²=OC²-HC²64-32=32
Обозначим точку касания квадрата и сферы Р.
Тогда R=ОР=√(OH²+PH²)=√32+16)=√48=4√3 см
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь равнобедренной трапеции, у которой длина основ 10 см и 26 см, а диагонали перпендикулярны к боковым сторонам. большое заранее.
выделяешь прямоугольный треугольник
его основание равно (26-10)/2=8
гипотенузой является боковая сторона трапеции- x
тогда по подобию треугольников (другой образован диагональю трапеции, боковой стороной и большим основанием трапеции) x/8=26/x и x^2=208
по теореме Пифагора высота трапеции равна sqrt(208-64)=12
тогда S=12*(10+26)/2=216