Пускай меньшая сторона х, тогда бОльшая - 5х. Уравнение: (х+5х)*2=96
х=96/12=8 5х=40
ответ: 8 и 40.
В параллелограмме abcd биссектриса угла a пересекает сторону bc в точке p ,bp:pc=4:3. периметр параллелограмма равен 110 см. найдите стороны параллелограмма
Объяснение:
Дано:
АВСD-параллелограмм ,
АР-биссектриса,
ВР/РС=4/3 , Р=110 см
Найти:
АВ, ВС, АС, СD.
Решение.
АР- биссектриса, значит ∠ВАР=∠РАD.Пусть одна часть х, тогда ВР=4х, ВС(4+3)*х=7х. По свойству противоположных сторон АD=7х.
Т.к. АD║ВС , АP-секущая , то накрест лежащие углы равны ∠DAP=∠ВКP ⇒ΔАВК-равнобедренный по признаку равнобедренного треугольника ⇒АВ=ВP=4х.
Р=АВ+ВС+СD+СD
4х+7х+4х+7х=110,
22х=110 , х=5 .
АВ=СD=4*5=20 (см),
ВС=СD=7*5=35 (см).
ответ: 10 (т.е. и вычислять ничего не нужно)))
а доказательство (аргументы для решения) может быть разным...
т.к. хорды по условию имеют общую точку (точку С), следовательно, ∡АСВ=90°
расстояние (которое нужно найти) называется радиусом окружности - это расстояние от центра до точки на окружности (до точки С)
известно: Прямой угол опирается на диаметр (диаметр=2*радиус).
"Расстояние между серединами" сторон треугольника - это средняя линия треугольника.
известно: Средняя линия треугольника (соединяет середины двух сторон треугольника) параллельна третьей стороне треугольника и равна ее половине. ---> диаметр=20; радиус=10...
а еще можно вспомнить: Около любого прямоугольника можно описать окружность. Радиус, перпендикулярный хорде, делит ее пополам. Диагонали прямоугольника равны.
на рисунке я провела эти радиусы и получился еще один прямоугольник (четверть большого прямоугольника), в котором диагонали равны...
Поделитесь своими знаниями, ответьте на вопрос:
Найдите стороны параллелограмма, если одна из них в 5раз больше другой, а периметр параллелограмма равен 96 см. решить, 15
Дан АВСD параллелограмм. Пусть AB=CD=x, тогда BC=AD=5x.
Так как периметр равен 96, то AB+BC+CD+AD=96
x+x+5x+5x=96
12x=96
x=8
Соответственно AB=CD=8, BC=AD=40