aleksvasin
?>

Найдите углы ромба если его диагонали составляют с его стороной угол равный 30

Геометрия

Ответы

Nikolaevich824
Диагонали ромба пересекаются под углом O = 90 градусов. То есть, у нас есть прямоугольный треугольник ADO. Пусть  ADO = х градусов? тогда другой DAO = (х+30) градусов. Если треугольник прямоугольный, то
x + x +30 = 90x+x+30=90 
2x = 602x=60 
x = 30x=30 
ADO = 30, DAO - 60.
Диагонали ромба делят его углы пополам, то есть углы ромба равны ADC = 2 * ADO = 60 и DAB = 2*DAO= 120 градусов. 
praskovya17
Если прямая (DC),  параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость  проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC).
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3. 
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²

Умоляю, с обязательно рисунок и подробное решение сторона ав квадрата abcd лежит в плоскости α. прям
Андрей-Викторовна1910

Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.

б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.

в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники  КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна

АК*АВ*sin∠КАВ.  Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит,  отношение их площадей равно единице.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите углы ромба если его диагонали составляют с его стороной угол равный 30
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Anna389
bykovaam
abuzik
Salnikov1730
Anatolevna
lokos201272
ИП-Сысоев1628
sherifovaelina
CafedeMinou
magazin3000
Zibuxin3
mar1030
ekvld708
Vladimirovich-Aleksandrovna96
slipu817838