Большая боковая сторона прямоугольной трапеции равна 50 см, а меньшее основание-20 см. диагональ трапеции делит ее прямой угол пополам. найдите площадь трапеции.
Поскольку основания трапеции параллельны, угол между диагональю и нижним основанием=углу между диагональю и верхним основанием (как накрест лежащие), раз она делит прямой угол пополам то угол между боковой стороной и диагональю так же будет равен углу между меньшим основанием и диагональю = 45°, у тебя получается равнобедренный треугольник, из него получаешь что перпендикулярная основаниям боковая стороны = 20см. Далее проводишь перпендикуляр к большему основанию из вершины меньшего, получается прямоугольный треугольник. катет и гипотенуза известны, по теореме пифагора находишь оставшийся катет, складываешь его длину с длиной меньшего основания и получаешь длину другого основания, а затем находишь площадь по формуле S=1/2(а+b)h, где h- высота трапеции (20), а и b-основания
Светлана308
20.08.2020
В основании правильной треугольной призмы лежит правильный треугольник, т.е. равносторонний боковая поверхность треугольной призмы состоит из 3 граней-прямоугольников со сторонами а - сторона основания, в - ребро грани в правильной призме равны, потому, s бок.пов. = 3×s(прямоугольника) = 3 × а × в = 3 × 2 × 5 = 30 см^2 Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер. я уже говорила, что основание правильной треугольной призмы лежит равносторонний треугольник, площадь которого ищется по формуле : s = (a^2 × корень из прощения за извращенный вариант написания формулы: не все символы есть.* отсюда, s = корень из 3 V = корень из 3 × 5 = 5 корней из 3. вот так)
argo951385
20.08.2020
В основании правильной треугольной призмы лежит правильный треугольник, т.е. равносторонний боковая поверхность треугольной призмы состоит из 3 граней-прямоугольников со сторонами а - сторона основания, в - ребро грани в правильной призме равны, потому, s бок.пов. = 3×s(прямоугольника) = 3 × а × в = 3 × 2 × 5 = 30 см^2 Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер. я уже говорила, что основание правильной треугольной призмы лежит равносторонний треугольник, площадь которого ищется по формуле : s = (a^2 × корень из прощения за извращенный вариант написания формулы: не все символы есть.* отсюда, s = корень из 3 V = корень из 3 × 5 = 5 корней из 3. вот так)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Большая боковая сторона прямоугольной трапеции равна 50 см, а меньшее основание-20 см. диагональ трапеции делит ее прямой угол пополам. найдите площадь трапеции.
Далее проводишь перпендикуляр к большему основанию из вершины меньшего, получается прямоугольный треугольник. катет и гипотенуза известны, по теореме пифагора находишь оставшийся катет, складываешь его длину с длиной меньшего основания и получаешь длину другого основания, а затем находишь площадь по формуле S=1/2(а+b)h, где h- высота трапеции (20), а и b-основания