полупериметр равен 11, синус 60° равен √3/2, площадь параллелограмма равна произведению его смежных сторон на синус угла между ними, если одна из сторон равна х см
, то другая, смежная ей, равна 11-х, а площадь
х*(11-х)*√3/2=14
х²-11х+28/√3=0
х=(11±√(121-112/√3))/2,
х=(11±√(121-112/√3))/2≈(11±55)/2; подходит только положительный корень, второй , отрицат., не подходит
х=33, значит, одна сторона да и первый не подходит. т.к. получаем, что сторона больше периметра. чего быть не может.
Задача составлена некорректно
Решение задачи:
Доказательство строим на факте, что биссектриса AF делит угол BAD на два равных угла:
BAF = FAD
По правилу накрест лежащих углов при параллельных прямых AB и CD:
∠BAF = ∠ DFA.
Тогда углы FAD и DFA тоже равны, так как BAF = FAD. Значит, треугольник AFD – равнобедренный с основанием AF. Следовательно, AD = DF. По тем же причинам в треугольнике BCF BC = CF. В параллелограмме противоположные стороны равны – значит, BC = AD. Но тогда CF тоже равен AD, а значит, равен также FD. Если CF = FD, то F – середина CD.
Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Угол emk равен 86 - градусов. луч между сторонами угла emk .найдите углы ema и amk , если угол ema больше amk в 3-раза
Угол ЕМА - 3х
Угол АМК -х
Всего 86 градусов
3х+х=86
4х=86
х= 21,5 - это угол АМК
УГОЛ ЕМА= 21,5×3=64,5