terehin863
?>

Один из углов, образовавшихся при пересечении двух прямых, равен 29 градусам. найдите градусные меры остальных углов.

Геометрия

Ответы

asvavdeeva
Углы образованные при пересечении двух прямых называются вертикальными и попарно равны.
29° два угла
180-29=151° оставшиеся два угла
baltgold-m27
ответ: 29°, 29°, 151°, 151°
Lesya
Если гипотенуза АВ параллельна оси Ох, то точки А и В - противоположные.
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
 (y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит, 
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.
На параболе у=х2(квадрат) выбраны три точки, являющие вершинами прямоугольного треугольника с гипоте
Romanovich1658
Если продлить секущие до пересечения, то получится треугольник, очевидно подобный исходному (уж точно с равными углами). Далее, у этих треугольников общая вписанная окружность, и точки касания параллельных сторон попарно лежат на противоположных концах диаметров (это - главный момент доказательства, я конечно, мог бы и не заострять внимание...).  Поэтому при вращении на 180° вокруг центра окружности точки касания "переходят в себя", следовательно, "переходят в себя" стороны треугольников (они перпендикулярны этим диаметрам).
То есть эти треугольники равны, и - поскольку отрезки стороны между секущими "переходят" в отрезки секущих между сторонами (тоже момент интересный - точка пересечения однозначно определяется двумя прямыми, и если две прямые переходят в две другие прямые, то точка пересечения переходит в ... понятно :)), они тоже равны. 
То есть это равенство отрезков не есть свойство только заданного треугольника, оно выполнено для произвольного треугольника.
Периметр каждого отсеченного треугольника равен сумме длин двух равных отрезков касательных из соответствующей вершины (в этом утверждении равенство касательных использовано дважды - равны отрезки касательной из вершины А и из вершин шестиугольника, ближайших к А, поэтому периметр равен .. ну, понятно).
Если обозначить отрезки касательных из вершины А за x, из B за y, из С за z, то
x + y = 5;
x + z = 7;
y + z = 6;
Откуда x = 3; (можно и остальные найти легко, y = 2; z = 4)
То есть периметр отсеченного треугольника с вершиной А равен 2*х = 6; периметр подобного ему исходного треугольника равен 5 + 6 + 7 = 18; то есть в 3 раза больше. Поэтому площадь малого треугольника равна 1/9 площади АВС.
Осталось сосчитать площадь АВС, например, по формуле Герона.
p = (5 + 6 + 7)/2 = 9; p - 5 = 4; p - 6 = 3; p - 7 = 2; 
S^2 = 9*4*3*2; S = 6√6;
Поэтому площадь малого треугольника 2√6/3;

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один из углов, образовавшихся при пересечении двух прямых, равен 29 градусам. найдите градусные меры остальных углов.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shef3009
Конычева-музей&quot;260
malgoblin2663
Дмитрий_Пергамент669
frdf57
Bondarev_Ayupova795
Alekseevich_Elena
ТигранКалмыкова
Татьяна_Александра1114
superniki87
Evsevia-a
klimovala2
ИвановнаВладимир1832
adman7
simonovaliubov5852