* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).
1. уравнение прямой: y=kx+b
подставим координаты в уравнение: -3=2k+b и 1=4k+b
из второго уравнения: b=1-4k
теперь подставим b в первое уравнение: -3=2k+1-4k => -3-1=2k-4k => -4=-2k =>k=2
теперь подставим k во второе уравнение: 1=4*2+b
b=1-8
b=-7
следовательно уравнение принимает вид: y=2x-7
2. теперь подставим y=0 . получается 0=2*х-7
2х=7
х=3,5 значит (3,5; 0)
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол c равен 60 градусов ac равен 4 bc 3 найдите сторону ab
теорема косинусов прямо 100-процентно подходит