10 см
Объяснение:
Дано: ΔАВС - прямоугольный, ∠С=90°, ВD - медиана, BD=2√13 cм, АС=8 см. АВ - ?
Если в условии дана медиана треугольника, я решаю задачу, достроив треугольник до параллелограмма. Теорема об удвоении медианы:
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.
Продлеваем медиану на такую же длину и строим параллелограмм АВСК, где диагональ АС=8 см, диагональ ВК=2√13+2√13=4√13 см.
Тогда АС²+ВК²=2(АВ²+ВС²).
208+64=2(АВ²+ВС²)
272=2(АВ²+ВС²)
АВ²+ВС²=136.
Вернемся к ΔАВС. По теореме Пифагора
АВ²+ВС²=136
АВ²-ВС²=64 (т.е. АС²)
2АВ² = 200; АВ²=100; АВ=10 см.
Объяснение:
В прямоугольном треугольнике АВС угол С прямой,
катеты равны 15 см и 20 см.
Найдите косинус , синус и тангенс угла В.
Решение.
Косинус (cosB)- отношение прилежащего катета (ВС=20 см) к гипотенузе.
Находим гипотенузу по т. Пифагора
АВ²=АС²+ВС² = 15²+20²=225+400=625;
АВ = √625=25 см. Тогда
cosB = 20/25 = 4/5 = 0.8.
Cинус угла В (sinB) равен отношению противолежащего катета (AC=15 см) к гипотенузе (АВ=25 см)
sinB = 15/25 = 3/5 = 0,6.
Тангенс угла В (tgB) равен отношению противолежащего катета (AC=15 см) к прилежащему (ВС=20 см)
tgB =15/20 = 3/4 = 0.75.
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ трапеции делит её среднюю линию на 2 отрезка, один из которых в 2, 7 раза больше другого. найдите основания трапеции, если их сумма равна 74 см.
Меньший кусок средней линии равен половине мньшего основания, больший кусок равен половине большего основания. Меньшее основание х, большее 2,7х. Уравнение
х+2,7х=74
3,7х=74
х=20.
ответ: меньшее 20, большее 54.