Общая формула окружности: где (a; b) - центр окружности, R - её радиус.
Найдём координаты центра окружности.Формула:
Получили точку O (3; 0).
Найдём радиус окружности.Радиус равен расстоянию между одной из данных точек (можно выбрать любую) и центром. Можно считать расстояние по теореме Пифагора, но есть формула, которая, вообще говоря, из теоремы Пифагора и получается.
Формула:
Подставляем полученное в общую формулу окружности.Получаем:
ответ: (x - 3)² + y² = 13.для вписанной окружности:
центр ---пересечение биссектрис углов треугольника
т.к. одна из биссектрис (проведенная к основанию (а)) ---медиана и высота, можно записать по определению тангенса: r / (a/2) = tg(альфа/2)
r = (a/2) * tg(альфа/2)
для описанной окружности: R = a / (2sin(180-2альфа)) = a / (2sin(2альфа))
r/R = a * tg(альфа/2) * 2sin(2альфа) / (2*a) = sin(2альфа)*tg(альфа/2)
можно еще немного сократить...
sin(2a) = 2sin(a)*cos(a) = 4sin(a/2)*cos(a/2)*cos(a)
r/R = 4cos(a)*(sin(a/2))^2 (здесь а---угол альфа)
Решение. На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.
AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны . Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.
Поделитесь своими знаниями, ответьте на вопрос:
Отрезок mh являеться диаметром. написать уравнение окружности, если м (0; 2), h (6; -2 , подробно.
Для начала, найдём координату центра окружности. Для этого воспользуемся соответствующей формулой:
О(х1+х2/2;у1+у2/2). Подставим числа и получим:
О(0+6/2;2-2/2)
О(3;0). Для того, чтобы написать уравнение окружности нам не хватает её радиуса. Найдём сначала длину диаметра, а затем выразим радиус. Теперь воспользуемся другой формулой:
d=корень из (х2-х1)^2+(у2-у1)^2. Получим:
d= корень из (6-3)^2+(-2-0)^2= корень из 13. Теперь, пришло время составить уравнение окружности. Оно будет выглядеть так:
(х-х0)^2+(у--у0)^2=r^2. Это оно в общем виде, а теперь подставим числа и получим:
(х-3)^2+у^2=13. Это и есть ответ.