Объяснение:
Два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями."
частные случаи:
1)Все квадраты подобны.
2)Если угол одного ромба равен углу другого ромба, то такие ромбы подобны.
3)Если две соседние стороны одного прямоугольника пропорциональны двум сторонам другого прямоугольника, то такие прямоугольники подобны.
4)Если две соседние стороны одного параллелограмма пропорциональны двум соседним сторонам другого параллелограмма, и углы, образованные этими сторонами, равны, то эти параллелограммы подобны.
5)Если соответственные стороны двух трапеций пропорциональны, то трапеции подобны.
6)Если угол одной трапеции равен углу другой трапеции, а стороны, образующие этот угол, и диагональ, выходящая из этого угла, соответственно пропорциональны двум сторонам другой трапеции, образующим угол, равный первому, и диагонали, выходящей из этого угла, то такие трапеции подобны.
Признак подобия произвольных выпуклых многоугольников
1)Если стороны и диагонали одного выпуклого n – угольника соответственно пропорциональны сторонам и диагоналям другого выпуклого n – угольника, то такие n – угольники подобны.
Признак подобия любых фигур:
1)Понятие подобия можно ввести не только для треугольников, но и для произвольных фигур. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется условие М1N1/MN = k, где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры F. Число k называется коэффициентом подобия фигур F и F1.
Поделитесь своими знаниями, ответьте на вопрос:
На сколько процентов увеличится гипотенуза прямоугольного треугольника если каждый его катет увеличить на 10%
честно мне кажется что будет увеличиваться на 0.5 т.к. если взять треугольник 3 4 5 то будет 3.3 4.4 =>5.5 (по линейке) вот так и с другими.