Боковые стороны равны 10 см, основание равно 8 см.
Объяснение:
Дан равнобедренный треугольник АВС с основанием АС. По условию точка касания делит боковые сторону (они равны) на отрезки x и y, считая от вершины В.
Касательные к вписанной окружности , проведенные из одной вершины, равны. Следовательно, периметр треугольника равен:
Рabc = 2x +4y = 28 см. (1) (уравнение)
x - y =2 (дано) => y = x-2. Подставляем это значение в (1):
2x + 4x - 8 = 28 => x = 6 см. y = 4 см. =>
Боковые стороны равны x+y = 10 см, основание равно 2y = 8 см.
№1
Дано:
угол 2 = угол 1 + 34°;
Найти: угол 3.
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
ответ: 73°.
№2
Дано:
ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
ответ: угол А = 53°, угол В = 37°.
Объяснение:
Если у вас другое оформление задач,то оформи так,как тебе требуется (лично у нас за неправильное оформление снижают оценки)
Желаю удачи в исправлении 2,и да,с днём святого Валентина)
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике боковая сторона 9 см, основание 5 см. вычислите периметр треугольника.
в равнобедренном треугольнике боковые стороны равны периметр равен 9+9+5= 23