Вариант 1 по фото
Вариант 2
1. Если угол АОД = 90, то и угол СОВ равен 90, т.
Е. они вертикальные и равны.
Из треугольника СОВ угол В получается равен 90 - 20 = 70 градусов.
А если при пересечении двух прямых третьей окажется, что какие - нибудь накрест лежащие унглы равны, то эти прямые параллельны.
Прямые АД и СВ пересечены секущей АВ.
Но угол ОАД равен 70 и угол ОВС тоже равен 70.
А эти углы накрест лежащие.
Значит, прямые АД и СВ параллельны
2.
По свойству прямоугольного треугольника если катет прямоугольного треугольника равен половине гипотенузы, то угол лежащий напротив этого катета 30 градусов.
Т. е.
Вс - гипотенуза сс1катет и угол авс 30 градусовнайдем сав.
180 - (30 + 90) = 60.
3. Поскольку в равнобедренном треуг - ке медиана, проведенная к основанию, является и биссектрисой, и высотой, то из середины основания надо провести перпендикулярный ему отрезок заданной длины, а потомсоединить вершину этого отрезка с крайними точками основания.
4. Начерти круг.
В произвольной точке окружности установить циркуль и тем же радиусом сделать двсе засечки на окружность.
Соедини, эти две засечки с центром.
Полученный угол - 120 градусов.
Поделитесь своими знаниями, ответьте на вопрос:
Доказать, что abcd параллелограмм
MB= AB/2
BC/AB=1/2 <=> BC= AB/2 =MB
△BMC - равнобедренный.
∠BMC=∠BCM
Аналогично ∠AMD=∠ADM
∠A= 180°-∠AMD-∠ADM =180°-2∠AMD
∠B= 180°-∠BMC-∠BCM =180°-2∠BMC
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.
Объяснение: