Дан ΔABC площадью 18 см² ; М-точка пересечения его медиан. Прямая, проходящая через точку A и параллельная прямой BC, пересекает прямую BM в точке K, а прямую CM в точке N. Прямые BK и AC пересекаются в точке L. Найдите площадь Δ MLN
Решение.
S(МСВ)=1/3*18=6 (см²) по свойству медиан о разбиении треугольника на 6 равновеликих.
1)ΔАКL=ΔBCL по стороне и 2-м прилежащим углам :AL=LC (ВL-медиана) , ∠1=∠2 как накрест лежащие при АК||ВС , АС-секущая ,∠АLK=∠CLB как вертикальные .
{Значит S(АКL)=S(BCL)=1/2*18=9 (cм²);
{Значит LK=BL
2)Пусть ML=x , тогда по т. о точке пересечения медиан ВМ=2х, BL=3x, LK=3x.
3) ΔMNK ~ ΔMCB по 2-м углам :∠3=∠4 как накрест лежащие , ∠NMK=∠CMB как вертикальные ⇒ отношение площадей равно к².
k= ⇒ S(MNK) : 6= 2² , S(MNK)=24
4) =
, S(MNL)= 6 cм²
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc, ab = 8 cm, bc = 12 cm, ac = 16 cm. на стороне ac отмечена точка d так, что cd = 9 cm. найдите отрезок bd.
BD = ОДНОЙ ВТОРОЙ BC => BD = 6см
Вроде правильно)