1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Решение.
Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3
PABC=AC+CB+AH+HB=2CB+2HB=16+6=22
ответ: 22
2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.
S=1/2p*r
r=2s/p
Т.к треугольник ABC-равнобедренный, то AB=AC=30
По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24
По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)
1) BO=DO (свойство параллелограммов). Тогда Ртр(aob) = AO + BO + 15, Pтр(aod) = AO + OB (подставили вместо OD, тк они равны) + 1.
Тогда: Paob - Paod = (AO+BO+15)-(AO+BO+1) = AO + BO + 15 - AO - BO - 1 = 15 - 1 = 14.
2) Тк дан параллелограмм, то угол BDA = углу DBC = 90° (свойство параллельных прямых и пересекающей их прямой) , те треугольник DBC прямоугольный, угол BCD (он же в условии C) = 45°, тогда угол BDC тоже равен 45° (свойство треугольников, сумма всех углов равна 180°) Следовательно треугольник DBC равнобедренный и BD=BC=7см. Дальше варианты:
1. гипотенуза DC = (BD²+BC²)^½ = (7²+7²)^½=7*(2)^½
2. CD = BD / sin(BCD) = 14/(2)^½
Можно избавиться от корня в знаменателе представив 14 как произведение 7 на корень из 2 на корень из 2 -> 14=7*(2)^½*(2)^½. Тогда один корень из числителя сократится с корнем из знаменателя и получим семь корней из двух.
Запись (x)^½ читается как x в степени ½, что эквивалентно "квадратный корень из х"
Поделитесь своими знаниями, ответьте на вопрос:
1высота параллелограмма равная 12 см проведена к стороне равной 14 см. найти площадь параллелограмма.2.стороны параллелаграмма 14 см и 26 см, один из углов равен 150 градусов. найти площадь параллелограмма
ответ: S ABCD = 168 см², S MNKP = 182 см².
Объяснение:
1. Пусть дан параллелограмм ABCD.
AK - высота, проведённая к основанию DC, равна 12 см.
DC - основание параллелограмма, равное 14 см.
Площадь параллелограмма равна произведению высоты на основание, к которому проведена высота.
⇒ S ABCD = AK · DC = 12 · 14 = 168 см².
2. Пусть дан параллелограмм MNKP.
MP = 14 см, MN = 26 см, ∠PMN = 150°.
MN || PK (по свойству параллелограмма).
∠PMN + ∠MPK = 180°, т.к. односторонние при MN || PK и секущей MP.
⇒ ∠MPK = 180° - 150° = 30°
Проведём из точки M к основанию PK данного параллелограмма высоту MB. Образовался прямоугольный ΔMBP (∠MBP - прямой).
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ MB = 1/2MP = 1/2 · 14 = 7 см.
MN = PK = 26 см (по свойству параллелограмма).
Площадь параллелограмма равна произведению высоты на основание, к которому проведена высота.
⇒ S MNKP = MB · PK = 7 · 26 = 182 см².