Урівнобедреному трикутнику авс з основою ас проведено висоту вd. знайдіть периметр трикутника авс, якщо вd=10см, а периметр трикутника авd дорівнює 40 см. нудно
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{-1;-1;2}, |AB|=√(1+1+4)=√6. BC{1;-1;0}, |BC|=√(1+1+0)=√2. CD{1;1;-2},|CD|=√(1+1+2)=√6. AD{1;-1;0}, |AD|=√(1+1+0)=√2. Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA. Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство). Что и требовалось доказать. Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}. Угол α между вектором a и b: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)]. В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или CosA=√3/3.
pechinin
20.04.2020
Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Урівнобедреному трикутнику авс з основою ас проведено висоту вd. знайдіть периметр трикутника авс, якщо вd=10см, а периметр трикутника авd дорівнює 40 см. нудно
АВ+ВС+BD+AD+DC+BD=2*40
(AB+BC+AD+DC)+2*BD=80
P+2*10=80
P=80-20=60(см)