найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
Параллельная гипотенузе прямая отсекает от исходного треугольника подобный ему. Пусть площадь исходного треугольника будет S₁, а меньшего S₂ Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного, Площади подобных фигур относятся как квадрат коэффициента их подобия. Пусть коэффициент подобия сторон=k S₁:S₂=2 (по условию) Отношение площадей треугольников= k² k² =2 Периметры подобных фигур относятся как их линейные измерения. Коэффициент подобия сторон и периметров треугольников k=√2 Р₁:Р₂=√2 Гипотенуза по т. Пифагора=√(3²+4²) =5 Р₁=3+4+5=12 12:Р₂=√2Р₂=12:√2 Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2 ответ: Периметр меньшего треугольника 6√2 ----------------- Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.
Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё. Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков. Построение см. во вложении.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Апараллейна в с-секущая угл 4 плюс угл 6 равен 78 градусов найти остальные углы
найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
найдем длины диагоналей
AC=((5-0)^2+(1-1)^2)=5
BD=((4-1)^2+(-1-3)^2)=5
диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Подробнее - на -
Объяснение: