Елена Ирина
?>

Высота rs прямоугольного треунгольника pqr делит гипотенузу pq на части ps=9 см и sq=16 см найдите стороны треугольника pqr

Геометрия

Ответы

necit12

Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.

Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD

△TAK=△TAN по гипотенузе и острому углу => AK=AN

Опустим перпендикуляр TH на плоскость основания.

По теореме о трех перпендикулярах HK⊥AB, HN⊥AD

AKHN - квадрат

Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.

Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2

=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC

Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.

S(AA1C1C) =AC*h (h - высота из A1)

32 =4√2*h => h =4√2

(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)

AA1 =h/sin45 =4√2*√2 =8 =BB1

AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)

=> BB1⊥BD, BB1D1D - прямоугольник

S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)


в основании параллелепипеда лежит квадрат со стороной 4 см. один из диагональных сечений параллелепи
AndreiFaikov1943

Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.

Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD

△TAK=△TAN по гипотенузе и острому углу => AK=AN

Опустим перпендикуляр TH на плоскость основания.

По теореме о трех перпендикулярах HK⊥AB, HN⊥AD

AKHN - квадрат

Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.

Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2

=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC

Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.

S(AA1C1C) =AC*h (h - высота из A1)

32 =4√2*h => h =4√2

(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)

AA1 =h/sin45 =4√2*√2 =8 =BB1

AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)

=> BB1⊥BD, BB1D1D - прямоугольник

S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)


в основании параллелепипеда лежит квадрат со стороной 4 см. один из диагональных сечений параллелепи

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высота rs прямоугольного треунгольника pqr делит гипотенузу pq на части ps=9 см и sq=16 см найдите стороны треугольника pqr
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

madina27821667
Курнев-Анастасия359
olofinskayae
Vasilii1891
kbndbyb6
Dushko
владимировнаКлютко
Li-111
innaterenina
minaskorolev8
itartdesignprof
Ионов202
Irinagarmonshikova
veniaminsem
Sknyajina5