а) CD= b+(3/2)·a. MB= 2·(b-a). MD= b- (1/2)·a.
б) доказательство в объяснении.
Объяснение:
a) По правилу сложения векторов вектор CD = CE+ED. Вектор ED - средняя линия треугольника АВС и равен АС/2 = 3а/2, так как вектор СА = 3·СN = 3·a. Значит вектор CD = b+(3/2)·a.
Вектор МВ = СМ - MB = 2b - 2a = 2·(b-a).
Вектор MD = ME+ED; ME = CE-CM = b-2a. ED =(3/2)·a. =>
Вектор MD = b- 2a + (3/2)·a = b - (1/2)·a.
б) Вектор NE = b-a. Вектор МВ = 2·(b-a). Следовательно, вектор NE СОНАПРАВЛЕН вектору МВ, то есть, параллелен ему, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь треугольника, вершины которого имеют координат (7; 6) (7; 7) (9; 7)
Высота пирамиды h = 30 дм опущена в точку пересечения диагоналей квадрата. Построить прямоугольный треугольник:
вертикальный катет - высота пирамиды h = 30 дм;
горизонтальный катет - отрезок, соединяющий основание высоты пирамиды и середину стороны квадрата c = а/2 = 16 дм;
гипотенуза - апофема боковой грани l.
Теорема Пифагора:
l² = h² + c² = 30² + 16² = 900 + 256 = 1156 = 34²
l = 34
Необходимое количество ткани - это площадь поверхности правильной четырехугольной пирамиды.
Площадь основания-квадрата S₀ = a² = 32² = 1024 дм².
Площадь боковой поверхности состоит из четырех равных треугольников S₄ = 4*(1/2)al = 2 * 32 * 34 = 2176 дм²
1) Необходимое количество ткани
1024 + 2176 = 3200 дм²
2) На швы и обрезки дополнительно 25% = 0,25
3200 + 0,25*3200 = 3200 +800 = 4000 дм²