ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
ответ: Длина хорды СМ равна 8 см.
Объяснение:
Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Диагонали ромба равны 3х=24 см и 4х=32 см
Поделитесь своими знаниями, ответьте на вопрос:
Начертите отрезок pk=3, 6 см, прямую cn так, чтобы луч cn пересекал отрезок pk в его середине, а отрезок cn не имел с отрезком pk общих точек