Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1].
ТреугольникРёбра3Символ Шлефли{3} Медиафайлы на Викискладе
Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2]. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}-мерной геометрии аналогом треугольника является {\displaystyle n}-й мерный симплекс.
ответ: ∡A=75°, CK=2 , tgA=(2√3+3)/√3
Объяснение:
Поскольку в прямоугольном треугольнике медиана, проведенная из вершины прямого угла равна половине гипотенузы, то запишем:
СМ=АМ => ΔAMC - равнобедренный => ∡A=∡ACM
∡ACH = 90°-∡A
=> ∡HCM=∡ACM-∡ACH=∡A-(90°-∡A)= 2*∡A-90°
Найдем теперь угол ∡HCK=∡ACK-∡ACH=45°-(90°-∡A)=∡A-45°
Поскольку ∡НСК=∡А-45° = ∡HCM/2= (2*∡A-90°)/2=∡A-45°,
то СК является биссектрисой угла НСМ, что и требовалось доказать.
б) Так как следует из а) СК является биссектрисой угла ∡НСМ в треугольнике НСМ , то по свойству биссектрисы
НС:MC=НК:KM=1:2=1/2
Но в треугольнике НСМ СМ является гипотенузой, а СН - катетом.
Тогда cos ∡HCM= HC/MC=1/2 =>∡HCM= 60° . Тогда ∡HCК=∡HCM:2=30°
∡АCН=∡АСК-∡HCК=45°-30°=15°.
∡А=90°-∡АСН=90°-15°=75°
Из прямоугольного треугольника НСК найдем биссектрису СК ( она же гипотенуза в данном треугольнике)
СК=НК:sin∡HCК=1/0.5=2
tg∡A=CH/HA
CH=CK*cos ∡HCК= 2*√3/2=√3
HA=AM-HK-KM
Еще раз напомню, что АМ=СМ
СМ=СН/cos∡HCM=√3/cos60°=2*√3
=>HA=2*√3-2-1=2*√3-3
tgA=√3/(2√3-3)=√3*(2√3+3)/(2√3+3)(2√3-3)= √3*(2√3+3)/ (12-9)
tgA=√3*(2√3+3)/3= (2√3+3)/√3
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник вписан в окружность. ас=9см, < авс=60 градусов, ао=r, найдите ао
2r=ас/sin60=9/(√3/2)=6√3
r=3√3