Площадь поверхности призмы равна сумме площадей боковой поверхности и двух ее онований.
Площадь боковой поверхности - произведение периметра основания на высоту призмы:
Sбок = nаh
Обратим внимание, что длина стороны основания дана в сантиметрах, а высота - в дециметрах.
а=23 см=2,3 дм
Sбок=6*2,3*5 =69 дм²
Так как в основании призмы - правильный шестиугольник, его площадь равна шестикратной площади правильного треугольника.
Площадь правильного треугольника со стороной 2,3 дм
S=а²√3):4 =2,3²√3):4 = (5,29√3):4
Площадь двух правильных шестиугольников (двух оснований призмы)
2*6*(5,29√3):4=3*(5,29√3)=15,87√3 дм²
S полная=69+15,87√3 дм²
Примечание: Если длины сторон указаны в разных единицах ошибочно, ход решения останется тот же, только вычисления нужно будет сделать другие. ответ, соответственно, тоже будет другим.
1. Основание равнобедренного треугольника равно 30, а высота, поведенная к боковой стороне, равна 24. Найдите площадь треугольника.
2.Дана трапеция ABCD. AB=12 см, AD=15 см DС=8См угол A=30 градусов. найдите площадь трапеции.
3.Найдите площадь прямоугольника,если его периметр равен 80 см,а отношение сторон равно 2:3
4.В параллелограмме меньшая высота и меньшая сторона равны 9 см и корню из 82 соответственно.Большая диагональ 15 см .Найти площадь параллелограмма.
5.Площадь квадрата равна 16 см квадратных найди площадь квадрата сторона которого больше на 2 с
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что плоскость проведенная через середины ребер д1с1, в1с1, и сс1 куба авсда1в1с1д1 параллельна плоскости св1д1. с рисунком,
Объяснение:
Проведем сравниваемые плоскости в данном кубе, соединив указанные в условии точки.
Имеем две плоскости - 2 треугольника -АСВ1 и авс.
По условию задачи сВ=аВ, Вв=вВ1. Все эти отрезки равны между собой, т.к. являются половинами ребер куба.
Треугольник АСВ1 являет собой равносторонний треугольник, т.к. его стороны равны диагоналям граней куба, а грани куба, как известно, равны.
Стороны св=ва=ас - средние линии треугольников СВВ1, АВВ1, АВС соответственно. Средние линии треугольников параллельны основаниям.
св║СВ1
ав║АВ1.
Нет необходимости доказывать, что ав перескается с вс, а АВ1 пересекается с СВ1
Еcли две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны, что и требовалось доказать.
2)
Вычислите периметр треугольника ACB1, если ребро = 2см.
Поскольку стороны этого треугольника - диагонали граней куба, а его грани - квадраты со стороной 2 см, найдем длину диагонали куба и затем уже периметр треугольника.
Известна формула диагонали куба. Эта формула выведена из теоремы Пифагора, легко запоминается и при решении задач бывает часто нужна:
d=а√2
а=2
d=2√2 см
АС=СВ1=АВ1=2√2 см
Периметр треугольника ACB1
Р=3d=3*2√2=6√2 см
.