Чтобы понять принцип решения, надо иметь 2 рисунка. Один - в виде осевого сечения пирамиды с вписанной в неё сферой через апофему боковой грани, второй - в виде плана основания.
По первому рисунку определяем: проекция отрезка, соединяющего вершину пирамиды с центром сферы, равна R/tg(β/2).
По второму эту же проекцию как отрезок биссектрисы угла при основании равнобедренного треугольника от вершины до точки пересечения биссектрис находим равной (a/2)*tg(α/2).
Приравняем: R/tg(β/2) = (a/2)*tg(α/2).
Отсюда ответ: R = (a/2)*tg(α/2)*tg(β/2.
Поделитесь своими знаниями, ответьте на вопрос:
Трапецияның буйір қабырғалары бірдей төрт бөлікке бөлініп, табандарына паралель кесінділермен қосылған.егер трапеция табандары 8 м және 24м болса, осы кесінділердің ұзындықтарын табыңыз керек
ответ: 337,5 см²
Объяснение:
Так как цилиндр описан вокруг призмы, то основания призмы вписаны в основания цилиндра, боковое ребро призмы является высотой цилиндра.
Площадь полной поверхности цилиндра - это сумма площади боковой поверхности и площади двух оснований:
Sпов = 2πRh + 2 · πR²
Центр окружности, описанной около прямоугольного треугольника лежит на середине гипотенузы. Значит, радиус основания цилиндра равен половине гипотенузы:
ΔАВС: ∠С = 90°, по теореме Пифагора:
АВ = √(АС² + ВС²) = √(9² + 12²) = √(81 + 144) = √225 = 15 см
R = 1/2 AB = 7,5 см
Большая грань призмы - грань, содержащая гипотенузу основания.
Так как диагональ прямоугольника АВВ₁А₁ делит прямой угол пополам, то АВВ₁А₁ - квадрат. Тогда
h = AA₁ = AB = 15 см
Sпов = 2πRh + 2 · πR² = 2π · 7,5 · 15 + 2π · 7,5² =
= 225π + 112,5π = 337,5π см²