70. в параллелограмме abcd на диагоналиac взяты точки киl так, что ak = = ас, cl = 5 ac, см. рисунок. найдите площадьчетырёхугольника bldk, если площадь па-раллелограмма abcd равна 168.
Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
ответ 5 см.
bykotatyana
21.03.2021
Попробую объяснить на словах, но ты включи свое воображение. по условию задачи точки лежат на окружности. соединим их попарно линиями проходящими через центр окружности О. получим два отрезка mn и ef, которые делятся центром окружности пополам. рассмотрим два треугольника mon и eof. сторона no равна стороне eo и сторона mo равна fo. получаем, что в наших рассматриваемых треугольника есть по две равные стороны. углы о в этих треугольниках тоже будут равны, т.к. являются вертикальными. на основании всего этого изложенного вытекает, что треугольники равны между собой, следовательно и стороны mn и ef РАВНЫ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
70. в параллелограмме abcd на диагоналиac взяты точки киl так, что ak = = ас, cl = 5 ac, см. рисунок. найдите площадьчетырёхугольника bldk, если площадь па-раллелограмма abcd равна 168.
Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
ответ 5 см.