Точки Т и Р лежат на стороне ВС, значит четырехугольник АТРД трапеция, углы при основании равны, значит равнобедренная. Радиус вписанной в него окружности равен корень из 3, следовательно высота трапеции равна 2 корня из 3. Обозначим высоту из точки Т ТК. В треугольнике АТК угол А 60 градусов. синус 60 градусов равен отношению ТК к АТ. АТ = 2 корня из 3 делим на синус 60 градусов. Получаем АТ=6, АК = 3, как катет , лежащий против угла в 30 градусов. Трапеция равнобедренная, то высота, проведенная из точки Р, отсекает такой же отрезок от точки Д. Далее, раз в трапецию можно вписать окружность, то сумма боковых сторон равна сумме оснований. Получаем 3+3+2ТР= 12 ТР=3, АД= 9
alaevluka77
14.06.2020
Сектор - часть круга. Длина дуги сектора вычисляется по формуле: L=π*r*n/180°. В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4. Теперь рассмотрим осевое сечение конуса. Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса. Причем высота конуса SH - это и биссектриса и медиана этого треугольника. В прямоугольном треугольнике SHC синус угла HSC равен отношению противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4. Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса). По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α. Cosα=√(1-sin²α)=√(1-1/16)=√15/4. Sinα=2*(1/4)*(√15/4)=√15/8. ответ: угол при вершине конуса равен arcsin(√15/8). α≈29°
Можно найти угол при вершине по теореме косинусов: Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b. В нашем случае a=b=r, c=2R=r/2. Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Люди добрые молю завтра в школу а я не знаю как это решать; (