Пусть основание тр-ка равно а. Тогда Биссектриса делит боковую сторону на отрезки в отношении 8/a, считая от вершины, противоположной основанию. Пусть эти отрезки равны m и n. Тогда
n/m = a/8;
m + n = 8;
Прямая, соединяющая концы биссектрис углов при основании, II основанию, и отсекает подобный треугольник, поэтому
m/8 = 2/a; перемножаем это с первым уравнением, получаем
n/8 = 2/8; n = 2; m = 6; a = 8/3;
Высота к основанию находится так
h^2 = 8^2 - (a/2)^2 = 8^2 - (8/6)^2 = 35*(8/6)^2;
h = 4*√35/3;
S = a*h/2 = (16/9)*√35
pnat1235
14.05.2021
Пусть дан треугольник ABC (рисунок прилагается). Проведем серединные перпендикуляры к AC и BC. Они пересекутся в точке O (они не могут быть параллельными, так как иначе AC и BC были бы параллельными, либо совпадали). Теперь опустим из O высоту OM на AB и докажем, что она является и медианой. Для треугольника BOC: OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный). Для треугольника AOC: OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный) Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Есть пирамида с длинами ребер 9, 9, 3, 12, 15, 15. она вписана в сферу. надо найти радиус этой сферы
Пусть основание тр-ка равно а. Тогда Биссектриса делит боковую сторону на отрезки в отношении 8/a, считая от вершины, противоположной основанию. Пусть эти отрезки равны m и n. Тогда
n/m = a/8;
m + n = 8;
Прямая, соединяющая концы биссектрис углов при основании, II основанию, и отсекает подобный треугольник, поэтому
m/8 = 2/a; перемножаем это с первым уравнением, получаем
n/8 = 2/8; n = 2; m = 6; a = 8/3;
Высота к основанию находится так
h^2 = 8^2 - (a/2)^2 = 8^2 - (8/6)^2 = 35*(8/6)^2;
h = 4*√35/3;
S = a*h/2 = (16/9)*√35