ambiente-deco516
?>

Решить №4-6, не могу понять эту тему никак

Геометрия

Ответы

gurman171
Трапеция АВСД, у которой АД-нижнее основание, ВС- верхнее основание.
Если трапецию можно вписать в окружность, то трапеция – равнобедренная (АВ=СД).
В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (АД+ВС=АВ+СД). Высота трапеции ВН равна диаметру вписанной окружности (ВН=2*6=12)
Средняя линия трапеции МК параллельна основаниям и равна их полусумме (МК=(АД+ВС)/2 или АД+ВС=2МК=2*13=26).
Тогда боковые стороны равны АВ+СД=26, значит АВ=СД=26/2=13.
Из прямоугольного ΔАВН найдем АН=√(АВ²-ВН²)=√(13²-12²)=√25=5.
В равнобедренной трапеции АД=ВС+2АН=ВС+10.
Подставим это в АД+ВС=26, получаем
ВС+10+ВС=26
ВС=16/2=8
АД=8+10=18
ответ: стороны 13, 8, 13, 18.
elenabarskova7145

1 б,в

2Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, <А=<А_1

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

3

Логин

Пароль

Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

\boxtimes

Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.

4 х-основание

х+х+3+х+3=36

3х=30

х=10

10+3=13 см-боковые стороны

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить №4-6, не могу понять эту тему никак
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sv455umarketing74
s9152992722344
katekn6032
Anatolevna1703
shalashcoffee
galustyanvitaly4842
Svatela37
Dodkhobekovich1683
Альберт Татьяна
bg1967bg
rusvicktor
ridyana504
oaved2018
bal4shovser16
tatyanaryzhkova