Пусть СР=х, тогда АР=4-х. Пусть СК=у, тогда ВК=6-у. Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим: ВС²-СР²=АВ²-АР², 6²-х²=5²-(4-х)², 36-х²=25-16+8х-х², х=27/8. Аналогично из прямоугольных тр-ков АСК и АВК: АС²-СК²=АВ²-ВК², 4²-у²=5²-(6-у)², 16-у²=25-36+12у-у², у=27/12. В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48. В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC. РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256. РК=45/16=2.8125 - это ответ.
Grigorev_Nikita794
14.01.2022
Если окружность касается осей координат, то её центр находится на биссектрисе прямого угла между осями координат (х = у) и радиус R равен х. В уравнении окружности можно у и R заменить на х. Записываем уравнение окружности: (х-2)²+(х-1)² = x². x²-4x+4+x²-2x+1 = x². Получаем квадратное уравнение: х²-6х+5 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-6)^2-4*1*5=36-4*5=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-(-6))/(2*1)=(4-(-6))/2=(4+6)/2=10/2=5; x₂=(-√16-(-6))/(2*1)=(-4-(-6))/2=(-4+6)/2=2/2=1.
Найдены 2 точки, которые могут быть центрами заданных окружностей.
ответ: (х-5)²+(у-5)² = 25. (х-1)²+(у-1)² = 1.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основания трапеции равны 3 м и 6 м, а высота равна 10 м. вычисли площадь трапеции.
Объяснение:
S= 0,5 (3+6) *10= 45 м^2