AE перпендикулярна СК, так как СК перпендикулярна BC (дано), а ВС параллельна AD.
CF перпендикулярна AК, так как АК перпендикулярна АВ (дано), а АВ параллельна СD). Следовательно, точка D - точка пересечения высот треугольника АКС.
В треугольнике АКС высота из вершины К также проходит через точку D, так как все высоты треугольника пересекаются в одной точке.
DM - перпендикулярна АС (дано), а так как из одной точки (D) на прямую (АС) можно опустить единственный перпендикуляр, следовательно точка К, принадлежащая перпендикуляру (высоте) к стороне АС, прохожящему через точку D, лежит на прямой MD, что и требовалось доказать.
shumilovs7252
05.04.2022
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Урівнобічній трапеції діагональ ділить тупий кут навпіл.периметр трапеції=160см.знайдіть середню лінію трапеції, якщо її основи відносяться як 1: 3
Доказательство в объяснении.
Объяснение:
AE перпендикулярна СК, так как СК перпендикулярна BC (дано), а ВС параллельна AD.
CF перпендикулярна AК, так как АК перпендикулярна АВ (дано), а АВ параллельна СD). Следовательно, точка D - точка пересечения высот треугольника АКС.
В треугольнике АКС высота из вершины К также проходит через точку D, так как все высоты треугольника пересекаются в одной точке.
DM - перпендикулярна АС (дано), а так как из одной точки (D) на прямую (АС) можно опустить единственный перпендикуляр, следовательно точка К, принадлежащая перпендикуляру (высоте) к стороне АС, прохожящему через точку D, лежит на прямой MD, что и требовалось доказать.