Даны координаты вершин треугольника: А(х1; у1), В(х2; у2), С(х3; у3).
AM, BM – медианы треугольника, О – точка пересечения медиан.
Так как М – середина ВС, то её координаты: М(х2 + х3)/2; (у2 + у3)/2).
Находим координаты вектора АМ.
АМ = (((х2 + х3)/2) – х1; ((у2 + у3)/2)) – у1).
АМ = (((х2 + х3 – 2х1)/2); ((у2 + у3 – 2у1)/2)).
Далее используем свойство, что медианы точкой пересечения делятся в отношении 2 к 1, считая от вершины, то есть АО = 2*ОМ.
Тогда АО = (2/3) АМ.
Значит, координаты вектора АО равны:
АО = ((2/3)*((х2 + х3 – 2х1)/2); (2/3)*((у2 + у3 – 2у1)/2)).
АО = (((х2 + х3 – 2х1)/3); (((у2 + у3 – 2у1)/3)). (1)
Обозначим координаты точки О(хо; уо).
Выведем вектор АО через координаты точек А и О:
АО = ((хо – х1); (уо – у1)). (2)
Приравняем в выражениях (1) и (2) координаты точки О.
((хо – х1) = ((х2 + х3 – 2х1)/3),
(уо – у1) = ((у2 + у3 – 2у1)/3).
Отсюда получаем искомое выражение для определения координат точки пересечения медиан:
хо = ((х1 + х2 +х3)/3),
уо = ((у1 + у2 + у3)/3).
Поделитесь своими знаниями, ответьте на вопрос:
точки a и b лежат на окружности с центром в точке o. угол oba равен 62 градуса. найдите угол oab.
тогда
∠САД = ∠САБ = β
∠АСД = 90°-β
∠БСА = 90° - ∠АСД = 90° - (90°-β) = β
Треугольник АБС равнобедренный :)
Высота трапеции h, тогда
h = 9*tg(β)
h = 5*sin(2β)
---
h² = 81*sin²(β)/cos²(β)
h² = 25*4*sin²(β)*cos²(β)
---
81*sin²(β)/cos²(β) = 100*sin²(β)*cos²(β)
81/100 = cos⁴(β)
Извлекаем корень
положительный
cos²(β) = +9/10
Это хорошо, позже будем решать дальше
cos²(β) = -9/10
Это плохо, дальше не развиваем
cos²(β) = 9/10
sin²(β) = 1-cos²(β) = 1-9/10 = 1/10
h² = 100*sin²(β)*cos²(β)
h² = 100*1/10*9/10
h² = 9
h = 3 (снова отбросили отрицательный корень)
Ну и площадь
S = 1/2(9+5)*3 = 21 см²