Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке отмечена часть, которая является для двух окружностейдля двух кругов
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.