1)
Прямые MK и AD параллельны по условию.
Выясним взаимное расположение прямых MK и AB и угол между ними.
Прямые в пространстве могут пересекаться, быть параллельными или скрещиваться.
Противоположные стороны параллелограмма параллельны, через две параллельные прямые проходит единственная плоскость => все вершины параллелограмма лежат в одной плоскости.
Прямая MK, не лежащая в плоскости ABC, параллельна прямой AD на этой плоскости => MK||(ABC)
=> MK не пересекается с AB.
MK||AD, AD не параллельна AB => MK не параллельна AB.
Таким образом MK и AB скрещиваются.
Угол между скрещивающимися прямыми - угол между параллельными им пересекающимися прямыми.
∠(AB,MK) =∠(AB,AD) =∠BAD =180-130 =50°
2)
Через точку вне данной прямой можно провести прямую, параллельную данной прямой, и притом только одну.
Через точку M проведем единственные КРАСНЫЕ прямые, параллельные скрещивающимся прямым.
Через две пересекающие прямые проходит плоскость и притом только одна.
Через КРАСНЫЕ прямые проведем единственную КРАСНУЮ плоскость.
Если прямая вне плоскости параллельна прямой в плоскости, то эта прямая параллельна плоскости.
Скрещивающиеся прямые параллельны единственной КРАСНОЙ плоскости.
ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
Поделитесь своими знаниями, ответьте на вопрос:
70 даны два треугольника авс и adc. точки в и d ле- жат в разных полуплоскостях относительно прямой авс. известно, что ab = ad, bc = dc. найдите угол сав, если угол bad равен 84".