Svatela37
?>

Ca-15 центральные и вписанные углы вариант a1у меня ктр, по братски! ​

Геометрия

Ответы

Natali-0706
Ян Гус стал сам началом революции. Сначала просто возмущаясь он просто вел моральную войну против церкви. Но после смерти его соратники развернули на столько глобальное восстание, что даже армия Папы Римского не сразила их достоинство.

Ян Гус беспощадно обличал духовенство за то , что оно отступает от провозглашённой в Евангелии бедности. Он возмущался торговлей церковными должностями в Риме, продажей индульгенции в Чехии и называл папу главным мошенником. «Даже последний грошик, который прячет бедная старушка, и тот умеет вытянуть недостойный священнослужитель. Как же не сказать после этого, что он хитрее и злее вора?»- говорил Ян Гус
Rakitin
Вариант 1, при АВ>BC.
а)  В ∆ АВС отрезок EF - средняя линия, так как соединяет середины
сторон АВ и АС.
ЕF параллельна ВС. Отрезок MD - секущая.
Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC.
По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC.
∠MNC=∠FND (вертикальные). Отсюда
∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
 
б)  В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2.
Но FN = FD (доказано выше) и
ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE.
Треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Для второго варианта, при АВ<ВС:
а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC
равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND.
FN=FD. Что и требовалось доказать.

б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2.
Но FN = FD (доказано выше) и
ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE.
То есть треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Окружность, вписанная в треугольник abc , касается сторон bc и ac в точках m и n соответственно, e и

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Ca-15 центральные и вписанные углы вариант a1у меня ктр, по братски! ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Valerevna
ИП_Рамис873
adman7
mikhail
Альберт Татьяна
olkay
Fetyukov
sales5947
Borisovna24
Morozova-Starikov
ИринаАлександровна
Анатольевич1707
os2854
Марина566
Михайловна991