ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Поделитесь своими знаниями, ответьте на вопрос:
Даны вершины треугольника а(3, -1) в(4, 2) с(-4, 2 найти косинус угла при вершине а треугольника авс.
Диагонали ромба равны 60см и 80 см, высота ромба 48 см
Объяснение:
Диагонали ромба относятся как 3:4, значит, и половинки диагоналей относятся как 3:4.
Пусть половинка одной диагонали равна 3х, тогда половинка другой диагонали равна 4х.
Диагонали ромба перпендикулярны, поэтому половинки диагоналей и сторона ромба образуют прямоугольный треугольник.
По теореме Пифагора: (3х)² + (4х)² = 50²
25х² = 2500
х = 10
Тогда половинки диагоналей равны 30см и 40см, а диагонали 60см и 80см соответственно.
Площадь ромба равна половине произведения диагоналей
S = 0.5 · 60 · 80 = 2400(см²)
Площадь ромба равна произведению стороны ромба и высоты h, опущенной на эту сторону.
2400 = 50 · h
h = 48(cм)