5.1. ∠АСВ = 30° (вписанный угол) опирается на дугу АВ. Центральный ∠АОВ опирается на эту же дугу, значит, ∠АОВ = 2 · ∠АСВ = 60°; ∠AOD = 180° - ∠ АОВ = 180° - 60° = 120°.
5.2. ∠DBC = 42° (вписанный угол) опирается на дугу CD. Центральный ∠COD опирается на ту же дугу, значит, ∠СOD = 2 · ∠DBC = 84°; ∠AOD = 180° - ∠СOD = 180° - 84° = 96°.
5.3. ∠BOC = 16°; ∠COD = 180° - ∠BOC = 180° - 16° = 164°; ∠COD - центральный угол, опирающийся на дугу CD. ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = = 0,5 ∠COD = 0,5 · 164° = 82°.
5.4. ∠AOD = 58°; ∠COD = 180° - ∠AOD = 180° - 58° = 122°; ∠COD - центральный угол, опирающийся на дугу CD; ∠OBC = ∠DBC, а ∠DBC - вписанный угол, опирающийся на ту же дугу CD, значит, ∠OBC = ∠DBC = 0,5 · ∠COD - 0,5 · 122° = 61°.
5.5. ∠ABD = 2° - вписанный угол, опирающийся на дугу АD, ∠ACD - вписанный угол, опирающийся на ту же дугу, значит, ∠ACD = ∠ABD = 2°.
5.6. ∠COD = 138° - центральный угол, опирающийся на дугу CD; ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = 0,5 · ∠COD = 0,5 · 138° = 69°.
Бурмистрова-Ирина660
07.01.2021
Осевое сечение - это сечение геометрической фигуры, плоскость которой проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S = 3*pi см^2. Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано куб abcda, b, c, d, знайти синус кута між прямою а.с та площиною abc.
5.1. ∠АСВ = 30° , ∠AOD = 120°
5.2. ∠DBC = 42° , ∠AOD = 96°
5.3. ∠BOC = 16° , ∠CAD = 82°
5.4. ∠AOD = 58° , ∠OBC = 61°
5.5. ∠ABD = 2° , ∠ACD = 2°
5.6. ∠COD = 138° , ∠CAD = 69°
5.1. ∠АСВ = 30° (вписанный угол) опирается на дугу АВ. Центральный ∠АОВ опирается на эту же дугу, значит, ∠АОВ = 2 · ∠АСВ = 60°; ∠AOD = 180° - ∠ АОВ = 180° - 60° = 120°.
5.2. ∠DBC = 42° (вписанный угол) опирается на дугу CD. Центральный ∠COD опирается на ту же дугу, значит, ∠СOD = 2 · ∠DBC = 84°; ∠AOD = 180° - ∠СOD = 180° - 84° = 96°.
5.3. ∠BOC = 16°; ∠COD = 180° - ∠BOC = 180° - 16° = 164°; ∠COD - центральный угол, опирающийся на дугу CD. ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = = 0,5 ∠COD = 0,5 · 164° = 82°.
5.4. ∠AOD = 58°; ∠COD = 180° - ∠AOD = 180° - 58° = 122°; ∠COD - центральный угол, опирающийся на дугу CD; ∠OBC = ∠DBC, а ∠DBC - вписанный угол, опирающийся на ту же дугу CD, значит, ∠OBC = ∠DBC = 0,5 · ∠COD - 0,5 · 122° = 61°.
5.5. ∠ABD = 2° - вписанный угол, опирающийся на дугу АD, ∠ACD - вписанный угол, опирающийся на ту же дугу, значит, ∠ACD = ∠ABD = 2°.
5.6. ∠COD = 138° - центральный угол, опирающийся на дугу CD; ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = 0,5 · ∠COD = 0,5 · 138° = 69°.