Первый случай, все три прямые могут совпасть в одну не годится т.к. по условию есть пересекающиеся.
Второй случай, две прямые совпали, а третья их пересекает в одной точке, тогда 4 части.
Третий случай, все три прямые пересекаются в одной точке, тогда 6 частей.
Четвёртый случай, каждая прямая пересекает другие две в различных точках, тогда 7 частей.
Пятый случай, две прямые параллельные, а третья пересекает каждую из параллельных, тогда 6 частей.
Шестой случай, две прямые параллельные, а третья совпадает с одной из них не годится т.к. по условию есть пересекающиеся.
Седьмой случай когда все три прямые параллельны не годится т.к. по условию есть пересекающиеся.
ответ: на 4, 6 или 7 частей.
Поделитесь своими знаниями, ответьте на вопрос:
Данo ab=cd .ao=bo кут cab = куту dba довести трикуник oca = трикутнику odr
Касательные к окружности, проведённые из одной точки, равны.
Обозначим равные отрезки как показано на рисунке через x, y и z.
AB=x+z, AC=x+y.
По теореме биссектрис АС/АВ=СД/ВД,
(x+y)/(x+z)=y/z,
xz+yz=xy+yz,
xz=xy,
z=y.
СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС.
Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай.
Не доказано.