По формуле Герона вычислим площадь треугольника
полупериметр
p = (40 + 40 + 48)/2 = 40 + 24 = 64 см
Площадь
S² = p(p-a)(p-b)(p-c) = 64*(64-40)(64-40)(64-48) = 64*24²*16
S = √(64*24²*16) = 8*24*4 = 768 см
---
Радиус описанной окружности
R = abc/(4S) = 40*40*48 / (4 * 768) = 10 * 40 * 2 / 32 = 5 * 5 = 25 см
---
ΔАВЦ - равнобедренный, т.к. две его стороны - это радиусы описанной окружности ΔАВД
ЦБ - высота ΔАВЦ, одновременно и его биссектриса и сторону АВ делит пополам
БВ = АВ/2 = 48/2 = 24 см
По т. Пифагора для синего треугольника
БЦ² + БВ² = ВЦ²
х² + 24² = 25²
x² = 25² - 24² = (25 + 24)(25 - 24) = 49
x = 7 см
---
Аналогично по т. Пифагора для малинового треугольника
у² + 20² = 25²
y² = 25² - 20² = (25 + 20)(25 - 20) = 45*5 = 9*25
y = 3*5 = 15 см
Поделитесь своими знаниями, ответьте на вопрос:
Дано: дан трегольник. угол б-30, угол с-65, ас-4. найти угол а-? , сторону бс-? , аб-?
1. Г
2. Угол DCE = 15°, значит угол ЕСО = 45° - 15° = 30°. В прямоугольном треугольнике ЕОС: sin ECO = OE:CE = sin 30 = 1:2. ответ: 1:2
3. Вписанный угол ABC равен половине центрального AOC ответ: 50°
4. Чтобы ромб был квадратом необходимо чтобы его диагонали были равны, а значит были равны и половины диагоналей. ответ: 8см
5. Зная стороны, найдём длину диагонали:
Опустим высоту из центра прямоугольника на сторону с длиной 6. У нас образовался прямоугольный треугольник с катетом 3 см и гипотенузой sqrt(73), можем найти высоту(расстояние от центра до стороны). Оно равно
Подходит только вариант А
6. Найдём длину оставшегося катета:
Значит наименьший острый угол лежит напротив катета a, т.к. 1 < 2 (меньший угол лежит напротив меньшего катета). Найдём тангенс: