Annabill1987
?>

Мне нужна . не могу разобраться с . если , буду ! 1)в треугольнике abc ac=bc=10 cos a=0.6 найдите ab2)в треугольнике abc угол b- тупой, ab=bc, ac=10, sin c=ch3) угол подъёма дороги равен 7°.используя таблицу тригоном. функций, найдите высоту, на которую поднимается пешеход, пройдя 200 м​

Геометрия

Ответы

Galina

ответ:

10×3=30

30×2=60

60÷5=12

12÷2=6

у треугольнике 3 угола умножаем на 3

2 нормалные умножаем на два и разделам на два

объяснение:

Глазкова633
1) Для решения этой задачи нам понадобятся знания о теореме косинусов. Дано, что ac = bc = 10 и cos a = 0.6. Мы хотим найти ab.

Теорема косинусов гласит: c^2 = a^2 + b^2 - 2ab * cos C, где C - угол противолежащий стороне c.

В данном случае у нас сторона c - это ab, угол C - это угол a, и стороны a и b равны между собой.

Подставим все значения в формулу и решим её по отношению к ab:

ab^2 = 10^2 + 10^2 - 2 * 10 * 10 * 0.6
ab^2 = 100 + 100 - 120
ab^2 = 80
ab = √80
ab ≈ 8.94

Ответ: ab ≈ 8.94

2) В этой задаче нам также потребуются знания о теореме синусов. Дано, что ab = bc, ac = 10, и sin c = ch. Мы хотим найти угол b и сторону ab.

Теорема синусов гласит: a/sin A = b/sin B = c/sin C, где A, B, C - углы треугольника.

В данном случае у нас сторона a - это ac, сторона b - это ab, угол A - это угол c, и угол B - это угол b.

Из условия задачи мы знаем, что sin c = ch. Значит sin c = sin b, так как снова углы c и b противолежат сторонам ac и ab соответственно.

Теперь мы можем записать уравнение нашей теоремы синусов:

10/sin c = ab/sin b

Так как sin b = sin c, мы можем записать:

10/sin c = ab/sin c

Перемножим обе части уравнения на sin c, чтобы избавиться от знаменателя:

10 = ab

Получаем, что ab = 10. Также мы уже знаем, что ab = bc. Значит, bc = 10.

Ответ: ab = bc = 10

3) В данной задаче мы можем использовать тригонометрическую функцию тангенса для решения. Дано, что угол подъёма дороги равен 7°, и пешеход прошёл 200 м. Мы хотим найти высоту.

Тангенс угла α равен отношению противоположной стороны к прилежащей: tg α = h/l, где h - высота, l - горизонтальное расстояние.

Мы знаем, что α равен 7° и l равно 200 м. Подставим значения:

tg 7° = h/200

Теперь найдём tg 7° из таблицы тригонометрических функций или с помощью тригонометрического калькулятора.

tg 7° ≈ 0.122

Подставим это значение в уравнение:

0.122 = h/200

Умножим обе части уравнения на 200, чтобы избавиться от знаменателя:

0.122 * 200 = h

24.4 = h

Ответ: высота, на которую поднимается пешеход, составляет 24.4 метра.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Мне нужна . не могу разобраться с . если , буду ! 1)в треугольнике abc ac=bc=10 cos a=0.6 найдите ab2)в треугольнике abc угол b- тупой, ab=bc, ac=10, sin c=ch3) угол подъёма дороги равен 7°.используя таблицу тригоном. функций, найдите высоту, на которую поднимается пешеход, пройдя 200 м​
Ваше имя (никнейм)*
Email*
Комментарий*