Если положить, что сторона треугольника равна а, то сторона шестиугольника равна а/3, и большая диагональ шестиугольника равна 2а/3.
Возможны два варианта, удовлетворяющих условию задачи.
1. окружность вписана в треугольник, отсекаемый стороной шестиугольника. Сторона такого треугольника равна b = а/3.
2. окружность является вневписанной, то есть лежит за пределами треугольника, касаясь стороны и продолжения двух других. Если провести прямую, параллельную стороне, которой касается эта окружность таким образом, чтобы оокружность оказалась вписанной, то сторона получившегося правильного треугольника будет равна b = 3а.
Для правильного треугольника сторона и радиус вписанной окружности связаны так
b = 2r√3;
В условии r = √3; то есть b = 6; поэтому а = 18 или 2, а большая диагональ шестиугольника равна 12 или 4/3.
Поделитесь своими знаниями, ответьте на вопрос:
Вкубе abcda1b1c1d1 точки м и к- середины диагоналей ac и а1в1. в какой плоскости параллельная прямая мк?
Доказать подобие треугольников А1СВ1 и АВС.
сделаем построение по условию
треугольники ACA1 и ВСВ1 - подобные по ПЕРВОМУ признаку подобия (по двум углам)
<AA1C=<BB1C=90 град
<ACA1=<BCB1 -вертикальные
следовательно , соответственные стороны относятся
СA1 / CB1 =CA / CB = k1 -коэффициент подобия для треугольников ACA1 и ВСВ1
отношение можно записать по-другому
СA1 / CA = CB1 / CB = k2 -коэффициент подобия для треугольников А1СВ1 и АВС.
т.е. треугольники А1СВ1 и АВС подобны по ВТОРОМУ признаку подобия
(если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны)
пропорциональные стороны СA1 / CA = CB1 / CB
<A1CB1 = <ACB --вертикальные
доказано подобие треугольников А1СВ1 и АВС.