Объяснение:
задача 1
угол В=180-90-37=53 градуса
задача 2
1) угол А равен углу С и равно (180-90)/2=45 градусов
2) угол DBC равен 180-90-45=45 градусов
3) треугольник BDC равнобедренный из-за того что угол угол В равен углу С
задача 5
1) угол А равен 30-ти градусам
2) BC равна 7,5 см за катетом что лежит против угла 30 градусов
задача 7
1) угол CAD равен 30 градусов ( потому что AD=2CD)
2) угол D равен 180-90-30=60 градусов
3) так как треугольник равнобедренный тогда угол B равен углу D и равен 60-ти градусам
БАН
Рассмотрим все случаи неравенства треугольника. Всего 2 случая, НО только один из них верный. Докажем это.
Во-первых, вспомним, что сумма двух сторон треугольника должна быть больше третьей стороны.
Проверим это:
Возьмём случай, где основание нашего равнобедренного треугольника равно 72 см, а боковые стороны по 36 см, ибо они по правилу равны. Проверим, существует ли такой треугольник, следуя теореме (выделена выше наклонным курсивом).
- это неверно;
- это верно;
- это верно.
Поскольку первый случай неверный, то такого треугольника не существует.
То есть боковые стороны нашего треугольника равны по 72 см.
(рисунок к задаче прикреплён ниже)
ответ: 5).→ Задача №6.Гипотенуза - самая большая сторона в прямоугольном треугольнике, поэтому она не может равняться в данной задаче 11 см, поскольку это не самая большая цифра здесь. Получается подходит вариант 5) 11 см, т.к. гипотенуза всегда больше катета.
ответ: 5).Поделитесь своими знаниями, ответьте на вопрос:
решите хоть что нибудь , кантрольная!
Объяснение:
1. В равнобедренном треугольнике углы при основании равны. Так как ABC - равнобедренный, значит углы ACB=ABC. Так как MN||BC, значит угол ABC=AMN и ACB=ANM, а значит углы AMN и ANM равны. Соответственно треугольник ANM - равнобедренный
2. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Получается, что треугольник ABC=ADC, отсюда следует, что AD=BC=10см