Площадь трапеции равна средней линии умноженной на высоту. Т.е если ввести обозначения: a — нижнее основание b — верхнее основание с — средняя линия d — боковая сторона h — высота S — площадь трапеции P — периметр трапеции, тогда получаем: S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем: S=(a+b)*h/2 Отссюда h=2*S/(a+b) Теперь напишем формулу для периметра: P=a+b+2*d, отсюда a+b=P-2*d Подставляем эту формулу в формулу h=2*S/(a+b) и получаем: h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность
D.Yu. Polina1703
09.02.2023
В 1) задаче смотри рисунок...проводим две высоты к большому основанию они отсекут два отрезка (эти отрезки маленькие называются полуразность оснований) то есть они равны каждый (49-15)/2=34/2=17 видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34 периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда (2х+3х)/2=5 5х=10 х=2 2*2=4 меньшее основание 3*2=6 большее
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Из точки вне плоскости проведены к ней перпендикуляр и две наклонные. наклонные равны 9 и 5, а сумма их проекций - 8. найти: проекции. ,
ответ будет 2