Это второй рисунок
Касательная NM перпендикулярна радиусу ON. ONM - прямоугольный треугольник. Катет против угла 30° равен половине гипотенузы. ON=OM/2 => ∠NMO=30°. Касательные из одной точки составляют равные углы с прямой, проходящей через эту точку и центр окружности.
∠NMK=2∠NMO =30°*2 =60°
Это четвёртый рисунок
∠BAM найден в задаче (3) =30°. Отрезки касательных из одной точки равны, AM=BM, △AMB - равнобедренный, ∠BAM=∠ABM.
∠AMB=180°-2∠BAM =180°-30°*2 =120°
Это первый рисунок Касательная KL перпендикулярна радиусу OK. OKL - прямоугольный треугольник. Катет против угла 60° равен другому катету, умноженному на √3.
KL=OK√3 =6√3
Это третий рисунок Треугольник OAB - равносторонний (OA=OB - радиусы), ∠OAB=60°. Касательная AC перпендикулярна радиусу OA, ∠OAС=90°.
∠BAC=∠OAC-∠OAB =90°-60° =30°
Это пятый рисунок Касательная MN перпендикулярна радиусу OM. OMN - египетский треугольник (3:4:5) cо множителем 3 (OM=4*3; ON=5*3). MN=3*3=9
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Поделитесь своими знаниями, ответьте на вопрос:
Вокруг треугольника abc описано окружность с центром о. найдите углы aob, boc и aoc, если: 1) угол a = 48, угол c = 63; 2) угол a = 37, угол c = 44.