innaterenina
?>

Боковые ребра пирамиды SABC равны между собой и наклоненны к плоскости основания под углом 60 градусов. а)Постройте пирамиду SABC. б)Найдите место расположения проекции высоты, проведенную к плоскости основания из вершины S с) Боковые ребра пирамиды равны 8см. ВС=6 и высота основания проведенная из вершины В к стороне АС пополам. Найдите длину стороны АС.

Геометрия

Ответы

Nevstrueva_Vasilevna

а)это вопрос

Объяснение:

ааа

teashop

Два заданих прямокутних трикутника - подібні

Объяснение:

Знайдемо всі кути першого прямокутного трикутника, знаючи, що сума кутів будь якого трикутника дорівнює 180°:

1 кут=90°, так як трикутник прямокутний,

2 кут=38°- за умовою задачі,

3 кут=180°-90-38=52°

Знайдемо всі кути другого прямокутного трикутника:

1 кут=90°, так як трикутник прямокутний,

2 кут=52°- за умовою задачі,

3 кут=180°-90-52=38°

1.Враховуємо першу ознаку подібності трикутників,  "Якщо два кути одного трикутника відповідно дорівнюють двом кутам іншого, то такі трикутники подібні".

2.Порівнюємо кути двох трикутників- вони рівні між собою.

3. Приходимо до висновку, що трикутники подібні.

iralkap
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Боковые ребра пирамиды SABC равны между собой и наклоненны к плоскости основания под углом 60 градусов. а)Постройте пирамиду SABC. б)Найдите место расположения проекции высоты, проведенную к плоскости основания из вершины S с) Боковые ребра пирамиды равны 8см. ВС=6 и высота основания проведенная из вершины В к стороне АС пополам. Найдите длину стороны АС.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

simonovaliubov5852
Цветкова
Александра Викторович531
Ольга1520
Ohokio198336
tanyamurashova11352
Терентьева
alexeylipatov
spz03
borisova-Sergeevna
Михайлович_гергиевич315
Что такое медиана, биссектриса и высота
tnkul
asvavdeeva
Юрий197
orgot9