Квадрат расстояния между двумя точками определяется соотношением d²=(x1−x2)²+(y1−y2)². Так как надо найти расстояние от точки до кривой, то координаты второй точки (лежащей на кривой) должны удовлетворять ее уравнению, поэтому d²=(x1−x2)²+(y1−f(x2))²=
Расстояние от точки до кривой - это минимальное расстояние между двумя точками, одна их которых лежит на кривой. Тогда для нахождения расстояния нам надо найти минимум функции определяющей расстояние, то есть, найти ее производную и приравнять нулю.
(d²)′ = 2(√(16 - x²) + 2x) / √(16 - x²).
Приравняем нулю числитель (можно выражение в скобках).
√(16 - x²) + 2x = 0 или √(16 - x²) = -2x.
Отсюда вывод: знак переменной х отрицателен.
Возведём обе части в квадрат.
16 - x² = 4x²,
5x² = 16, отсюда х = +- 4/√5, но у нас х = -4√5.
Находим у = +-√(16 - x²), но так как точка А имеет ординату с плюсом, то и ближайшая точка на кривой тоже с плюсом.
Заданная кривая x² + y² = 16 это окружность с центром в начале координат и радиусом 4.
Ближайшая точка лежит на одном радиусе ОА.
ОА = √(-1 - 0)² +(2 - 0)² = √5.
ответ: d = 4 - √5.
Ерохин
09.01.2022
Так как не указано какой угол прямой, то возможны два варианта. 1) АВ=с=13 см - гипотенуза; АС=а, ВС=b - катеты; по условию а+b=17, тогда: b=17-a; По теореме Пифагора: а^2+b^2=c^2; a^2+(17-a)^2=13^2; a^2+289-34a+a^2=169; 2a^2-34a+120=0; a^2-17a+60=0; D=(-17)^2-4*60=49; a=(17-7)/2=5 и а=(17+7)/2=12; b=17-5=12 и b=17-12=5; ответ: 5; 12 или 12; 5 2) АВ=а=13 см - катет; АС=b - катет; ВС=с - гипотенуза; по условию b+с=17, тогда: b=17-c; По теореме Пифагора: а^2+b^2=c^2; 13^2+(17-c)^2=c^2; 169+289-34c+c^2=c^2; 34c=458; c=458/34=229/17; b=17 - 229/17=60/17; ответ: 60/17; 229/17
yuraotradnov
09.01.2022
Треугольник - 3 точки не лежащие на одной прямой соедененные между собой тремя отрезками. Периметр - сумма длин трёх сторон треугольника. Первый признак равенства треугольника: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника то эти треугольники равны Из точки не лежащей на прямой можно провести перпендикуляр к этой прямой и притом только один Медиана- отрезок соединяющий вершину треугольника с серединой противоположной стороны. Высота - перпендикуляр, проведенный из вершины треугольника к прямой седержащей противоположную сторону. Биссектриса- отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны и делящий угол по полам В равнобедренном треугольнике углы при основании равны В равнобедренном треугольнике биссектриса является медианой и высотой.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти расстояние от точки (-1; 2) до кривой х^2+у^2=16.
Даны точка А(-1; 2) и кривая x² + y² = 16.
Квадрат расстояния между двумя точками определяется соотношением d²=(x1−x2)²+(y1−y2)². Так как надо найти расстояние от точки до кривой, то координаты второй точки (лежащей на кривой) должны удовлетворять ее уравнению, поэтому d²=(x1−x2)²+(y1−f(x2))²=
= (x + 1)² + (√(16 - x²) - 2)² = x² + 2x + 2 + 16 - x² - 4√(16 - x²) + 4 =
= 2x −4√(16 - x²) + 20.
Расстояние от точки до кривой - это минимальное расстояние между двумя точками, одна их которых лежит на кривой. Тогда для нахождения расстояния нам надо найти минимум функции определяющей расстояние, то есть, найти ее производную и приравнять нулю.
(d²)′ = 2(√(16 - x²) + 2x) / √(16 - x²).
Приравняем нулю числитель (можно выражение в скобках).
√(16 - x²) + 2x = 0 или √(16 - x²) = -2x.
Отсюда вывод: знак переменной х отрицателен.
Возведём обе части в квадрат.
16 - x² = 4x²,
5x² = 16, отсюда х = +- 4/√5, но у нас х = -4√5.
Находим у = +-√(16 - x²), но так как точка А имеет ординату с плюсом, то и ближайшая точка на кривой тоже с плюсом.
у = √(16 - (-4/√5)²) = √(16 - (16/5)) = √(64/8) = 8/√5.
Расстояние находим по вышеприведенной формуле.
d² = (-4/√5) - (-1))² + (8/√5 - 2)² = 21 - 8√5.
d = √(21 - 8√5) = √(16 - 8√5 + 5) = √(4 - √5)² = 4 - √5 ≈ 2,236.
Эту задачу можно было решить проще.
Заданная кривая x² + y² = 16 это окружность с центром в начале координат и радиусом 4.
Ближайшая точка лежит на одном радиусе ОА.
ОА = √(-1 - 0)² +(2 - 0)² = √5.
ответ: d = 4 - √5.